
Published in Transactions on Machine Learning Research (12/2023)

Neural Implicit Manifold Learning for Topology-Aware
Density Estimation

Brendan Leigh Ross brendan@layer6.ai
Layer 6 AI

Gabriel Loaiza-Ganem gabriel@layer6.ai
Layer 6 AI

Anthony L. Caterini anthony@layer6.ai
Layer 6 AI

Jesse C. Cresswell jesse@layer6.ai
Layer 6 AI

Reviewed on OpenReview: https: // openreview. net/ forum? id= lTOku838Zv

Abstract

Natural data observed in Rn is often constrained to an m-dimensional manifold M, where
m < n. This work focuses on the task of building theoretically principled generative models
for such data. Current generative models learn M by mapping an m-dimensional latent
variable through a neural network fθ : Rm → Rn. These procedures, which we call pushfor-
ward models, incur a straightforward limitation: manifolds cannot in general be represented
with a single parameterization, meaning that attempts to do so will incur either compu-
tational instability or the inability to learn probability densities within the manifold. To
remedy this problem, we propose to modelM as a neural implicit manifold: the set of zeros
of a neural network. We then learn the probability density within M with a constrained
energy-based model, which employs a constrained variant of Langevin dynamics to train and
sample from the learned manifold. In experiments on synthetic and natural data, we show
that our model can learn manifold-supported distributions with complex topologies more
accurately than pushforward models.

1 Introduction

Here we undertake the broad statistical task of generative modelling: estimating an unknown probability
distribution P ∗ from a sample {xi} ⊂ Rn of datapoints. Real-world distributions are diverse, complex, and
often high-dimensional. Despite the apparent difficulty of modelling such data (Cacoullos, 1966), generative
modelling methods have been resoundingly successful at synthesizing photorealistic images (Rombach et al.,
2022) among other achievements. However, the empirical success of generative modelling has come with
unexpected phenomena, such as exploding inverses (Behrmann et al., 2021) and high densities placed on
out-of-distribution data (Nalisnick et al., 2019), possibly as a result of its complex geometric (Loaiza-Ganem
et al., 2022) or topological (Cornish et al., 2020) structure. These pathologies underscore the necessity of
designing mathematically principled generative models whose inductive biases encode reasonable assumptions
about the data.

In this work we focus on building a density estimator that correctly specifies the topology of the data
manifold. With a thorough analysis of related literature, we highlight that most models for densities on
manifolds are pushforward models: neural networks fθ : Rm → Rn trained to transform an m-dimensional
prior into a flexible distribution on the data manifold embedded in Rn. As we show, such methods are likely

1

https://openreview.net/forum?id=lTOku838Zv

Published in Transactions on Machine Learning Research (12/2023)

Figure 1: In the top row, our EBIM method is depicted on simulated circular data from a von Mises
distribution. From left to right: ground truth sample of von Mises data; a manifold-defining function Fθ
learned from the data; and an ambient energy Eψ trained with constrained Langevin dynamics on the learned
manifold. The energy takes the lowest values in areas of high density, precisely as one would expect. In
the bottom row, manifold learning and density estimation results from the resulting model are juxtaposed
with a pushforward baseline. From left to right: the ground truth; a pushforward energy-based model; and
an energy-based implicit manifold (ours). By defining the manifold with a constraint Fθ(x) = 0, our method
can accurately model data with non-trivial topologies.

to misspecify all but the simplest of data topologies, exposing fθ to a frontier of tradeoffs between expressivity
and numerical stability (Salmona et al., 2022). This situation is a potential source of the aforementioned
pathologies.

To model a much broader class of topologies, we propose a new generative model, the energy-based implicit
manifold (EBIM). Our approach consists of two steps, which are outlined in Figure 1. Armed with a funda-
mental theorem from geometry, we first describe a novel way to model data manifolds: implicitly, as the zero
set of a neural network Fθ. Next, we model the density within the manifold with a constrained energy-based
model, a likelihood-based model which uses constrained Langevin dynamics to sample points on the learned
manifold. We show that EBIMs can be composed with each other akin to standard energy-based models
(Hinton, 2002): manifold-defining functions Fθ along with their energies Eψ can be combined to take unions
and intersections of data manifolds in what we call manifold arithmetic. We demonstrate theoretically and
empirically that EBIMs can learn manifold-supported densities more accurately than pushforward models.
Given its success modelling low- and high-dimensional data alike, EBIMs represent a fruitful direction for
mathematically grounded modelling of complex datasets.

2 Background, Related Work, and Motivation

2.1 Modelling Manifold-Supported Data

Manifold structure Commonly, the distribution P ∗ of interest is supported on a submanifoldM embed-
ded in the ambient space Rn. For example, the manifold hypothesis states that real-world high-dimensional
data tends to have low-dimensional submanifold structure (Bengio et al., 2013). Elsewhere, data from engi-
neering or the natural sciences can be manifold-supported due to smooth physical constraints (Mardia et al.,
2007; Boomsma et al., 2008; Brehmer & Cranmer, 2020; Cresswell et al., 2022).

2

Published in Transactions on Machine Learning Research (12/2023)

We will seek to estimate a probability density on this manifold. Formally, suppose {xi} is a set of samples
drawn from probability measure P ∗ supported onM, an m-dimensional Riemannian submanifold of Rn. We
focus on the case where m < n, so thatM is “infinitely thin” in Rn, meaning P ∗ does not admit a probability
density with respect to the standard Lebesgue measure. However, we may assume it has a density p∗(x)
with respect to the Riemannian measure of M. We elaborate formally on this setting in Appendix A.

Models for manifold-supported data have long been of interest in statistics, machine learning, and various
applications (Pless & Souvenir, 2009; Diaconis et al., 2013; McInnes et al., 2018). A common theme in
machine learning has been to account for – or attribute performance to – underlying manifold structure in
data (Ozakin & Gray, 2009; Rifai et al., 2011). In particular, a number of past works have explored Monte
Carlo methods on manifolds (Brubaker et al., 2012; Byrne & Girolami, 2013; Zappa et al., 2018), which
we put to use here. However, the problem of simultaneously learning a submanifold and an underlying
density has only become of interest in tandem with recent advances in deep generative modelling (Brehmer
& Cranmer, 2020). To our knowledge, all such models fall under the umbrella of pushforward models.

Density estimation with pushforward models When manifold-supported, P ∗ is most commonly mod-
elled as the pushforward of some latent distribution:

z ∼ pψ(z), x = fθ(z), (1)

where fθ : Rm → Rn is a smooth mapping given by a neural network and z ∼ pψ(z) is a (possibly trainable)
prior on m-dimensional latent space. The resulting model distribution Pθ,ψ is supported on the model
manifold1Mθ := fθ(Rm). This framework encompasses generative adversarial networks (GANs) (Goodfellow
et al., 2014; Arjovsky et al., 2017), injective flows (Brehmer & Cranmer, 2020; Caterini et al., 2021), and
various regularized autoencoders (Makhzani et al., 2015; Tolstikhin et al., 2018; Ghosh et al., 2020; Kumar
et al., 2020). Since we take the support to be an m-dimensional submanifold, we rule out models with full-
dimensional support, such as bijective normalizing flows (continuous or otherwise) (Rezende & Mohamed,
2015; Dinh et al., 2017; Chen et al., 2018), diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021b), and variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014).

However, not all pushforward models have explicitly computable densities. In recent work, Loaiza-Ganem
et al. (2022) outline a general procedure for density estimation with pushforward models, which sepa-
rates modelling into two components: a generalized autoencoder, which embeds the data manifold into
m-dimensional latent space, and a density estimator, which learns the density within the manifold. The
generalized autoencoding step treats fθ as a decoder, pairing it with a smooth encoder gϕ : Rn → Rm, and
trains them to learn M by mutually inverting each other on the data,2 such as by minimizing a reconstruc-
tion loss Ex∼P∗ ∥x− fθ(gϕ(x))∥2. The density estimator pψ(z) is then fitted to the encoded data {gϕ(xi)}
via maximum-likelihood. Given a datapoint x ∈M, two-step models estimate p∗(x) as follows:

pθ,ψ(x) = pψ(z)
∣∣det J⊤

fθ
(z)Jfθ (z)

∣∣−1/2
, (2)

where z := gϕ(x) is the encoding of x and Jfθ is the Jacobian of fθ with respect to its inputs z. The fidelity
of this estimate depends on the condition fθ(gϕ(x)) = x for all x ∈ M; in other words, gϕ must be a right-
inverse of fθ on M. Injective flow models (Brehmer & Cranmer, 2020; Caterini et al., 2021; Kothari et al.,
2021; Ross & Cresswell, 2021) enforce invertibility on Mθ with architectural constraints; other two-step
models (Xiao et al., 2019; Ghosh et al., 2020; Rombach et al., 2022), like Loaiza-Ganem et al. (2022), achieve
this condition at their non-parametric optimum.

Topological challenges Despite the broad applicability of this density estimation procedure, the requisite
right-invertibility condition is effectively impossible to satisfy for general manifolds M. If fθ(gϕ(x)) = x for
all x ∈M, then by definition, gϕ smoothly embedsM into Rm. This condition presents an immediate topo-
logical challenge: M is an m-dimensional manifold, which in general cannot be embedded in m-dimensional
Euclidean space. In line with the strong Whitney embedding theorem (Lee, 2012, pg.135), M might not be

1Mθ may not formally be a manifold if fθ is not an embedding because the resulting image can “self-intersect,” but this
distinction can be ignored in practice for density estimation models, as we will soon justify.

2In particular, fθ becomes a left inverse of gϕ on M, and gϕ becomes a right inverse of fθ on M.

3

Published in Transactions on Machine Learning Research (12/2023)

embeddable in Euclidean space of less than 2m dimensions.3 It is thus impossible in the general case for the
support of the prior pψ(z) to match M topologically; see the bottom-middle of Figure 1 for an example.

In the presence of this topological mismatch, one might optimistically hope that Mθ can sufficiently ap-
proximate M with enough capacity and training. However, Cornish et al. (2020) show that when this is
possible, the bi-Lipschitz constant of fθ will diverge to infinity, rendering fθ either analytically non-injective
or numerically unstable, and making density estimates unreliable (Behrmann et al., 2021). Accordingly, the
topological woes of pushforward models cannot be “brute-forced” into submission.

Awareness of the data manifold’s topology may be necessary for downstream applications such as defending
against adversarial examples (Jang et al., 2020) or out-of-distribution detection (Caterini & Loaiza-Ganem,
2021). In the injective normalizing flows literature in particular, there has been interest in learning manifolds
with multiple charts (Kalatzis et al., 2021; Sidheekh et al., 2022), which are certainly more expressive than
using a single chart. Thus far, such approaches require ancillary models for inference, which can complicate
density estimation, and must set the number of charts as a hyperparameter. Multiple charts also may not
overlap perfectly, misspecifying the manifold.

2.2 Implicitly Defined Manifolds

The aforementioned limitations of pushforward models stem from the inability of smooth embeddings of Rm
to characterize anything but the simplest of manifolds. A richer class of manifolds can be defined implicitly,
as given by the following fact from differential geometry (Lee, 2012, pg.105):

The full-rank zero set theorem Let U ⊆ Rn be an open subset of Rn, and let F : U → Rn−m be a
smooth map. If the Jacobian matrix JF of F has full rank on its zero set F −1({0}) := {x ∈ U : F (x) = 0},
then F −1({0}) is a properly embedded submanifold of dimension m in Rn.

In this paper, we exploit this theorem by constructing a neural network Fθ and defining a new model manifold
Mθ := F −1

θ ({0}). We call Fθ the manifold-defining function (MDF) of Mθ. We refer to such manifolds
as implicitly defined or implicit. These are not to be confused with the unrelated term implicit generative
model, which has been used to describe both energy-based models (Du & Mordatch, 2019) and some types
of pushforward models (Mohamed & Lakshminarayanan, 2016).

The zero sets of neural networks have been employed with great success for one special type of manifold: 3D
shapes (Niemeyer & Geiger, 2021). An active subcommunity has formed around learning implicit 3D shapes
with varying types of supervision, such as a priori shape information (Chen & Zhang, 2019; Mescheder
et al., 2019; Park et al., 2019) or 2D images of the object (Niemeyer et al., 2020). For our context, Gropp
et al. (2020) propose the most relevant method, which learns a coherent shape from a point cloud without
supervision by regularizing gradients. We can reinterpret this as manifold learning, but it can only be applied
in the restrictive setting where m = n−1. Here we propose a way to fit Fθ to data manifolds of any dimension
m embedded in any dimension n ≥ m.

2.3 Energy-Based Models

Energy-based models (EBMs) have a long history in machine learning (Lecun et al., 2006) and physics (Gibbs,
1902). The energy-based model represents a probability density on Rn with an energy model Eψ : Rn → R
by way of the relation

pψ(x) = e−Eψ(x)∫
Rn e−Eψ(x′)dx′ . (3)

EBMs can be trained for maximum likelihood using contrastive divergence (Hinton, 2002). If Pψ represents
the sampling distribution of the EBM with energy Eψ, the likelihood with respect to a single observation xi
has the following gradient:

∇ψ log pψ(xi) = −∇ψEψ(xi) + Ex′∼Pψ [∇ψEψ(x′)] . (4)
3A naive solution would be to increase the model’s latent space dimensionality to 2m; however, this would make the encoded

data {gϕ(xi)} singular in R2m, invalidating density estimates.

4

Published in Transactions on Machine Learning Research (12/2023)

The first gradient term minimizes the energy on the true (positive) observations, while the second maximizes
the energy on (negative) samples generated by the model over the course of training. As a result, EBMs can
be trained by minimizing

Ex∼P∗,x′∼sg[Pψ] [Eψ(x)− Eψ(x′)] , (5)
where sg[·] denotes the stop gradient operator commonly available in automatic differentiation libraries such
as PyTorch (Paszke et al., 2019), meaning that gradients are not propagated through the sampling process
during training.

Xie et al. (2016) introduced the first deep EBM for generative modelling. Notably, their method uses
Langevin dynamics (Welling & Teh, 2011), a continuous MCMC algorithm, to generate samples from the
model Pψ during both training and test time. One iteration of Langevin dynamics from point x(t) to x(t+1)

consists of the following update:

x(t+1) = x(t) + εr − ε2

2 ∇xEψ(x(t)), (6)

where ε is a hyperparameter for the step size and r ∼ N(0, In) is Gaussian noise. In practice, many
iterations of Langevin dynamics samples are necessary to obtain samples close to the stationary distribution,
Pψ. Strategies to assist convergence have since become popular in the literature (Nijkamp et al., 2019; Du
& Mordatch, 2019; Grathwohl et al., 2020a; Nijkamp et al., 2020).

Some past works incorporate energy-based models with pushforward models. Xiao et al. (2021) model
an EBM in the latent space of a VAE, but its training procedure maximizes full-dimensional likelihoods,
making it unsuitable for density estimation on manifolds. Che et al. (2020) and Arbel et al. (2021) construct
pushforward EBMs by using GAN discriminators to refine the generator’s distribution; these models produce
distributions on manifolds, but do not admit density estimates. Yoon et al. (2021) propose normalized
autoencoders (NAEs), which treat the reconstruction error of an autoencoder as an energy function with
the goal of improving its out-of-distribution detection capability, but like Xiao et al. (2021), it is trained as
a full-dimensional model, making it unsuitable for manifold-supported density estimates.

3 Method

Our method comprises two steps. In the first step (Section 3.1), we implicitly capture the data manifold
using a neural network Fθ∗ . In the second step (Section 3.2), we train a second neural network Eψ∗ to
capture the data density within the manifold as an energy. Together, these neural networks form a single
distributional model, which we call an energy-based implicit manifold (EBIM).

3.1 Neural Implicit Manifolds

In this section, we describe a practical procedure for modelling data manifolds implicitly using neural net-
works. Let Fθ : Rn → Rn−m be a smooth neural network with parameters θ; our goal is to optimize it to
become a manifold-defining function for M, the data manifold. According to the full-rank zero set theorem
of Section 2.2, Fθ needs to meet three conditions:

1. Fθ(x) = 0 for all x ∈M.

2. Fθ(x′) ̸= 0 for all x′ ̸∈ M.

3. JFθ (x) has full rank for all x ∈M.

Since M is the support of P ∗, condition 1 can be encouraged by the constraint Ex∼P∗ ∥Fθ(x)∥ = 0, which
we achieve by minimizing Ex∼P∗ ∥Fθ(x)∥.

Condition 2 requires that Fθ has no zeros outside of the true data manifold. We can satisfy this constraint by
locating off-manifold points x′ ∈ Rn for which ∥Fθ(x′)∥ is small and maximizing this norm at these points.
This goal bears a resemblance to the negative sample term in contrastive divergence, where here ∥Fθ(·)∥

5

Published in Transactions on Machine Learning Research (12/2023)

Figure 2: Manifold defining functions Fθ trained without regularizing negative samples or JFθ . On the left,
a regular neural network, has become completely flat; F −1({0}) is the entire space. On the right is the left-
inverse of an injective flow, whose Jacobian has full rank analytically, but becomes numerically non-injective.
These should be contrasted to the second pane of Figure 1.

acts as an energy function. Taking inspiration from the EBM literature, we thus use Langevin dynamics
to sample these negative points from the distribution Pθ given by the energy ∥Fθ(·)∥. Since ∥Fθ(x)∥ is a
non-negative scalar equal to zero only if x is on the manifold, it is analogous to the reconstruction loss
of an autoencoder. Treating it like an energy thus parallels the training procedure of NAEs (Yoon et al.,
2021). We emphasize, however, that maximizing ∥Fθ(x′)∥ on negative samples is a regularizer to satisfy the
full-rank zero set theorem which bears a useful resemblance to contrastive divergence. Its purpose is to fit a
manifold, not to train an EBM.

Condition 3 is equivalent to ensuring all singular values of JFθ (x) are nonzero for x ∈ M. To achieve this
condition, we take inspiration from Kumar et al. (2020). Given their decoder fθ and z ∈ Rm, they make
their Jacobian Jfθ (z) injective by bounding ∥Jfθ (z)u∥ away from zero for all unit-norm vectors u ∈ Rm. To
implement this bound for all unit-norm u ∈ Rm in practice, they sample u uniformly from the unit sphere
and minimize the following regularizer with respect to θ:

Ex∼P∗,u∼U(Sm−1)

[
(η − ∥Jfθ (z)u∥)2

+

]
, (7)

where U(Sm−1) is the uniform distribution on the unit sphere Sm−1 := {u ∈ Rm : ∥u∥ = 1}, (·)+ denotes
the ReLU function, and η is a hyperparameter that determines the minimum singular value of Jfθ (z). We
can do the same, except by bounding ∥v⊤JFθ (x)∥ away from zero for all unit-norm v ∈ Rn−m, since we seek
to make JFθ (x) surjective.4 This serves a similar purpose to the 3D shape learning objective of Gropp et al.
(2020), which bounds the L2 norm of the gradient JFθ (x) away from zero. However, their process does not
readily generalize to higher dimensionalities.

Combining these techniques, we propose the following loss:

Ex∼P∗,x′∼sg[Pθ],v∼U(Sn−m−1)

[
∥Fθ(x)∥ − α∥Fθ(x′)∥+ β

(
η − ∥v⊤JFθ (x)∥

)2
+

]
, (8)

where here U(Sn−m−1) is the uniform distribution on the unit sphere in (n−m)-dimensional space Sn−m :=
{v ∈ Rn−m : ∥v∥ = 1} and α, β, and η are hyperparameters determining the negative sample weighting,
the rank-regularization weighting, and the minimum singular value of JFθ , respectively. The three terms of
this loss respectively encourage conditions 1, 2, and 3 described above. In high-dimensional settings, we find
it useful to constrain the maximum singular value to η as well; this is implemented by replacing the ReLU
(·)+ with the identity function. Otherwise, the MDF has a propensity to become very steep during training,
destabilizing the negative sample generation process and the resulting gradients of the model weights.

Empirically speaking, the two regularization terms obviate degeneracy in the MDF. Without regularization,
Fθ will converge towards the zero-function, even if we enforce analytical surjectivity in the Jacobian by

4Note we are here referring to a matrix as injective (resp. surjective) if it has full column (resp. row) rank.

6

Published in Transactions on Machine Learning Research (12/2023)

Figure 3: Manifold arithmetic with an implicitly learned sphere. From left to right: a spherical distribution
learned by an EBIM; the union of two copies of the same model translated in different directions; and the
intersection of the same two copies.

structuring Fθ as the left-inverse of an injective flow (Kothari et al., 2021) (Figure 2, right). The unregularized
flow sends Ex∼P∗ ∥Fθ(x)∥ → 0 by bringing its singular values arbitrarily close to zero without learning the
manifold. It effectively becomes numerically non-injective, akin to observed instabilities in bijective flows
(Cornish et al., 2020; Behrmann et al., 2021).

Expressivity Making the simplifying assumption that neural networks can embody any smooth func-
tion (Hornik et al., 1989; Csáji, 2001), we may compare the expressivity of neural implicit manifolds with
pushforward manifolds. Pushforward models can model densities on precisely those manifolds which are
homeomorphic to a subset of Rm.

On the other hand, a broader class of manifolds can be modelled implicitly. M can be represented implicitly
if and only if it satisfies the technical condition that its normal bundle is “trivial” (Lee, 2012, pg.271).
Non-trivial normal bundles are not commonly seen in low-dimensional examples except in non-orientable
manifolds such as the Möbius strip or Klein bottle. Though it is unclear whether the manifolds of most
natural datasets have trivial normal bundles (e.g. Carlsson et al. (2008) find a dataset of image patches to
have the topology of a Klein bottle), it is certainly a broader class than pushforward models can capture.

Manifold arithmetic Some datasets might satisfy multiple constraints, which one might want to learn
separately before combining into a mixture or product of models. Since implicit manifold learning can be
interpreted as learning a set of constraints, neural implicit manifolds exhibit composability similar to energy-
based models (Hinton, 2002; Mnih & Hinton, 2005). If F1 and F2 are MDFs for M1 and M2 respectively,
then the unionM1∪M2 is the zero set of the product of functions x 7→ F1(x)F2(x). Concatenating outputs
into the function x 7→ (F1(x), F2(x)) instead produces the intersection M1 ∩M2. We note that M1 ∪M2
and M1 ∩M2 need not be manifolds anymore, meaning we can combine MDFs to form complex structures
that cannot be described with a single manifold (Figure 3). Taking intersections and unions could, for
example, be used to model conjunctions or disjunctions of data labelled with multiple overlapping attributes
(Du et al., 2020), or to model manifolds with components of different dimensionalities (Brown et al., 2023).

3.2 Constrained Energy-Based Modelling

Suppose we have used the techniques from the last section to come up with a fully trained neural implicit
manifoldMθ∗ , which is henceforth fixed. In this section we introduce the second step in our procedure, the
constrained energy-based model (CEBM), for density estimation on Mθ∗ . Let Eψ : Rn → R be an energy
function represented by a neural network and define the corresponding density as follows:

pθ∗,ψ(x) = e−Eψ(x)∫
Mθ∗

e−Eψ(x′)dµ(x′)
, x ∈Mθ∗ , (9)

7

Published in Transactions on Machine Learning Research (12/2023)

where dµ can be equivalently thought of as the Riemannian volume form or Riemannian measure of Mθ∗

(see Appendix A for details). Let Pθ∗,ψ be the resulting probability measure (we can think of Pθ∗,ψ as a
probability distribution characterized by both the manifold Mθ∗ and the density pθ∗,ψ). Since the energy
Eψ is defined on the full ambient space Rn but the corresponding model is defined only from its values on
Mθ∗ , we refer to pθ∗,ψ as a constrained energy-based model.

Having defined pθ∗,ψ and fixed the manifold Mθ∗ , we seek to maximize log-likelihood on the data via
gradient-based optimization of Eψ. Since the denominator

∫
Mθ∗

e−Eψ(x′)dµ(x′) is an intractable integral,
we resort to contrastive divergence:

∇ψ log pθ∗,ψ(xi) = −∇ψEψ(xi) + Ex′∼Pθ∗,ψ [∇ψEψ(x′)] . (10)

Importantly, the right-most term in Equation 10 is an expectation taken over Pθ∗,ψ, so samples from the
model are required for optimization.

Constrained Langevin Monte Carlo How can one sample from Pθ∗,ψ? Du & Mordatch (2019) use
Langevin dynamics, a continuous MCMC method, to sample from deep EBMs. For constrained EBMs,
standard Langevin dynamics is insufficient, as it will produce off-manifold samples from the energy. We need
a manifold-aware MCMC method.

One such method is constrained Hamiltonian Monte Carlo (CHMC), a family of Markov chain Monte Carlo
models for implicitly defined manifolds proposed by Brubaker et al. (2012). Our main contribution in
this section, aside from defining constrained EBMs, is to show that CHMC – which is typically applied
to analytically known manifolds – can be adapted to manifolds that are defined by neural networks. In
particular, we show how to avoid the unstable and sometimes memory-prohibitive operation of explicitly
constructing the Jacobian of Fθ∗ , which features prominently in CHMC.

We focus on the special case of constrained Langevin Monte Carlo (CLMC). Fixing a step size ε and omitting
most parameter subscripts for brevity, one iteration from position x(t) to x(t+1) requires two steps:

1. Sample a momentum r ∼ N(0, In) conditioned on membership of the tangent space of Mθ∗ at
x(t). This can be done by sampling r′ ∼ N(0, In) and projecting onto the null space of JFθ∗ (x(t))
(written as JF for clarity):

r := r′ − J⊤
F (JFJ⊤

F)−1JF r′. (11)

2. Solve for the new position x(t+1) using a constrained Leapfrog step, which entails solving the
following system of equations for x(t+1) and the Lagrange multiplier λ ∈ Rn−m:

x(t+1) = x(t) + εr − ε2

2 ∇xE(x(t))− ε2

2 JF (x(t))⊤λ (12)

F (x(t+1)) = 0. (13)

Now we describe how Equations 11 and 12 can be computed without constructing JF . With access to
efficient Jacobian-vector product (jvp) and vector-Jacobian product (vjp) routines, such as those available
in functorch (He & Zou, 2021), any expression in the form of JFw = jvp(F, w) for w ∈ Rn or J⊤

F v =
(v⊤JF)⊤ = vjp(v, J)⊤ for v ∈ Rn−m is tractable. Furthermore, the inverse term on the right-hand side
of Equation 11 can be computed with inspiration from work in injective flows by Caterini et al. (2021)
who overcome a similar expression using the conjugate gradients (CG) routine (Nocedal & Wright, 2006;
Gardner et al., 2018; Potapczynski et al., 2021) and their forward-backward auto-differentiation trick. CG
allows us to compute expressions of the form A−1b = CG(A, b), where A is an (n−m)× (n−m) matrix. In
particular, CG requires access only to the operation v 7→ Av, not the matrix A itself. In our case, b = JF r′, a
Jacobian-vector product, and the operation is v 7→ JFJ⊤

F v, which is again computable as a vector-Jacobian
product followed by a Jacobian-vector product. Since JF is a wide matrix, this operation is most efficiently
performed using backward-mode followed by forward-mode auto-differentiation, so our method can be termed
the backward-forward variant.

Equations 12 and 13 can be combined into a single minimization problem which can be easily optimized by
first-order methods like stochastic gradient descent (Robbins & Monro, 1951) or second-order methods like

8

Published in Transactions on Machine Learning Research (12/2023)

Algorithm 1 Efficient Constrained Langevin Monte Carlo
Require: trained manifold-defining function Fθ∗ , energy Eψ, step size ε, step count k, initial point x(0)

x′ ← x(0)

for t = 1, . . . , k do
r′ ∼ N(0, In)
// Project r′ to tangent space
mvp_JJT(·)← jvp(Fθ∗ , vjp(·, Fθ∗)⊤)
r ← r′ − vjp (CG (mvp_JJT(·), jvp(Fθ∗ , r′)) , Fθ∗)⊤

// Take a constrained Leapfrog step along r

λ∗ ← arg minλ
∥∥Fθ∗

(
x′+εr− ε

2

2 ∇xEψ(x′)− ε2

2 vjp (λ, Fθ∗)⊤)∥∥
x′ ← x′ + εr − ε2

2 ∇xEψ(x′)− ε2

2 vjp (λ∗, Fθ∗)⊤

return x′

L-BFGS (Byrd et al., 1995):

λ∗ = arg min
λ

∥∥∥∥Fθ∗

(
x(t) + εr − ε2

2 ∇xEψ(x(t))− ε2

2 JFθ∗ (x(t))⊤λ

)∥∥∥∥ . (14)

In computationally challenging contexts, we can settle for suboptimal solutions at the cost of introducing
bias. Once obtained, λ∗ can be plugged back into Equation 12 to directly calculate x(t+1).

The two steps described above constitute a single iteration of CLMC. In practice, many iterations are
required to obtain a sample resembling Pθ∗,ψ (Algorithm 1). Following Du & Mordatch (2019), we use a
sample buffer for 95% of generated samples to assist convergence during training. To obtain completely new
samples to initialize the CLMC chain, we sample random noise in ambient space and project them to Mθ∗

by computing arg minx′ ∥Fθ∗(x′)∥2.

3.3 Method Summary

Here we summarize the procedure to fit our entire model, which we call an energy-based implicit manifold
(EBIM). We start with a dataset {xi} sampled from P ∗ and belonging to some ground truth manifold M.

1. We first train a network Fθ to satisfy the full-rank zero set theorem by optimizing Equation 8. Once
fully trained, Fθ∗ is an MDF for the neural implicit manifold Mθ∗ .

2. We next learn the density within Mθ∗ by fitting a constrained EBM, Eψ. The likelihood of Eψ

can be maximized using the gradient in Equation 10, but computing this gradient requires sampling
from Eψ. To do so, we run efficient Constrained Langevin Monte Carlo as outlined in Algorithm 1.
Once trained, we refer to the energy as Eψ∗ .

A trained MDF Fθ∗ paired with a trained energy Eψ∗ together define the manifold and density of the model,
Pθ∗,ψ∗ . We call this (Fθ∗ , Eψ∗) pair an EBIM.

4 Experiments

In this section we demonstrate the efficacy of EBIMs on a diverse range of topologically non-trivial data.
Our code is written in PyTorch (Paszke et al., 2019). We use GPyTorch (Gardner et al., 2018) for conjugate
gradients and the marching cubes algorithm of Yatagawa (2021) to plot 2D implicit manifolds in 3D. We
generate synthetic data with Pyro (Bingham et al., 2019). Network architectures, hyperparameter settings,
and further experimental details can be found in Appendix B.

4.1 Modelling Non-Trivial Topologies

The current literature on density estimation for non-trivial topologies assumes the manifold is known be-
forehand (Gemici et al., 2016; Mathieu & Nickel, 2020; Rezende et al., 2020; De Bortoli et al., 2022). Here

9

Published in Transactions on Machine Learning Research (12/2023)

we show that EBIMs are the best choice for such distributions in the absence of a priori knowledge of
the manifold. We reiterate that all manifolds learned in these experiments are determined only based on
samples, without additional knowledge. Quantitative comparisons of density estimates are challenging when
manifolds are unknown: likelihood values, the usual way to compare density estimators, are uninformative
for different learned manifolds. Any test datapoint that is not within the model manifold would result in a
model likelihood of 0 because model densities are strictly constrained to their manifolds. Instead, we grade
model densities on the basis of the Wasserstein-1 distance to the ground truth (Table 1), which is a rigorous
way to measure the distance between two distributions on possibly non-overlapping submanifolds (Arjovsky
et al., 2017).

As discussed in Section 2, there are many pushforward density estimation models that could serve as a basis
of comparison. We focus on a simple pushforward EBM consisting of an autoencoder with an EBM in the
latent space. We experimented with regularizing the autoencoder by training with a Gaussian VAE objective,
but it did not learn the manifold as well as a regular autoencoder (Appendix B, Figure 10). Likewise, one
could replace the latent EBM with any density estimator (such as a normalizing flow (Brehmer & Cranmer,
2020) or VAE (Dai & Wipf, 2019)), but this would not affect the learned manifold. The pushforward EBM
is thus a sufficient baseline for evaluating manifold-learning ability on low-dimensional examples.

Figure 4: Manifold learning and density estimation re-
sults on a balanced, disjoint mixture of two von Mises
distributions. Four models are depicted: the ground
truth, an ambient EBM, a pushforward EBM, and an
EBIM (ours).

Von Mises mixture In our first experiment,
we evaluate density estimation ability on 1000
points sampled from a mixture of two von Mises
distributions on circles embedded in 2D. Results
for an ordinary EBM, a pushforward EBM, and
an EBIM are visible in Figure 4. Of note is the
topology of the density learned by the pushfor-
ward EBM; it is necessarily connected and ap-
pears to be homeomorphic to the real line except
at two points of self-intersection. The EBIM, in
contrast, captures the manifold even in regions of
sparsity. The ordinary EBM is not subject to the
topological limitations of the pushforward EBM,
but still lacks the inductive bias to learn the low
intrinsic dimension of the data.

Geospatial data Following Mathieu & Nickel (2020), we model a dataset of global flood events from the
Dartmouth Flood Observatory (Brakenridge, 2010), embedded on a sphere representing the Earth. Despite
the relative sparsity of floods compared to previous datasets (they only occur on land), the EBIM still
perfectly learns the spherical shape of the Earth (Figure 5). The pushforward EBM represents the densities
fairly well, but struggles to learn the sphere and places some density off of the true manifold. Note that the
EBIMs and pushforward EBMs are plotted using a triangular mesh and mesh grid, respectively, due to the
difference in how they are defined.

Amino acid modelling The structure of some amino acids can be characterized by a pair of dihedral
angles and thus possesses toroidal geometry. Designing flexible probabilistic models for torus-supported
data is consequently of interest in the bioinformatics literature on protein structure prediction (Singh et al.,
2002; Mardia et al., 2007; Ameijeiras-Alonso & Ley, 2020), and so amino acid angle data is a practical
candidate for evaluating the density estimation ability of EBIMs. In Figure 6, we compare an EBIM with
a pushforward EBM using an open-source amino acid dataset available from the NumPyro software package
(Phan et al., 2019). Remarkably, our manifold-defining function learns the torus well in the presence of
sparse data. We postulate this is because the torus is the simplest manifold matching the data’s curvature.
On the other hand, the pushforward EBM was unable to reliably model the manifolds. This stark drop in
performance is concerning because one might reasonably expect higher-dimensional datasets to have more
complex topologies than a simple torus, but the corresponding misbehaviour of the pushforward model would
be impossible to visualize and difficult to detect.

10

Published in Transactions on Machine Learning Research (12/2023)

Figure 5: Manifold learning and density estimation results on flood location data. From left to right with two
different viewpoints (top and bottom): the ground truth data; a pushforward EBM; and an EBIM (ours).

Figure 6: Manifold learning and density estimation results on the glycine angle data. From left to right: the
ground truth data; a pushforward EBM; and an EBIM (ours).

Table 1: Mean Wasserstein distances with standard errors over 3 runs (lower is better).

Dataset PEBM EBIM (ours)
Von Mises Mixture 0.013± 0.001 0.002± 0.001
Geospatial 0.056± 0.017 0.014± 0.003
Amino Acid Modelling 0.042± 0.013 0.026± 0.001

Numerical results for the above three topologically interesting datasets are given in Table 1. In all cases
the EBIM more closely replicates the data distribution than the pushforward EBM, and usually with less
variation over runs.

4.2 Modelling Image Manifolds

Image generation In this section we show that EBIMs can be scaled to higher-dimensional data manifolds:
MNIST (LeCun et al., 1998) and Fashion MNIST (Xiao et al., 2017). For the manifold dimension we select 16
a priori; this value is close to intrinsic dimension estimates of MNIST and Fashion MNIST in the literature
(Pope et al., 2021; Zheng et al., 2022; Brown et al., 2023). We provide three baseline comparisons: a vanilla
autoencoder with an EBM in the latent space (AE+EBM), a variational autoencoder with an EBM in the
latent space (VAE+EBM), and a normalized autoencoder (NAE) (Yoon et al., 2021). In short, NAEs are
EBMs whose energies are defined by the reconstruction loss of an autoencoder and which use its latent

11

Published in Transactions on Machine Learning Research (12/2023)

Figure 7: MNIST (top) and Fashion MNIST (bottom) samples. Columns from left to right: AE + EBM,
VAE + EBM, NAE, IM (ours, ablation), and EBIM (ours).

Table 2: Mean FID scores with standard errors over 5 runs (lower is better).
Dataset AE+EBM VAE+EBM NAE IM (ours, ablation) EBIM (ours)
MNIST 19.8± 0.4 17.9± 0.6 17.0± 0.3 19.2± 0.5 15.3± 1.0
FMNIST 52.7± 0.3 54.1± 0.5 28.2± 2.6 39.3± 0.3 30.7± 0.6

space to perform efficient on-manifold initialization of Langevin dynamics. They were designed for out-of-
distribution detection and cannot provide density estimates on manifolds, our stated goal, but we include
them for their training similarities to EBIMs. We also report the quality of samples generated from the
implicit manifolds (IMs) prior to fitting the density with a CEBM (i.e. we treat ∥Fθ∗(·)∥ as an energy
function in Rn). Samples from all models are provided in Figure 7 with FID scores (Heusel et al., 2017) in
Table 2 for reference.5

The EBIM outperforms the two pushforward models, the AE+EBM and VAE+EBM, on both datasets, as
well as the NAE on MNIST. However, the EBIM slightly underperforms the NAE on Fashion MNIST. One
cause is that Langevin dynamics can be run more efficiently with NAEs; it is partly run in low-dimensional
latent space, and requires only one network pass per step. In contrast, constrained Langevin Monte Carlo
must be run in high-dimensional ambient space and requires many network passes per step (Algorithm 1).
As a result, we only run one step per training step for image data, whereas NAEs are trained with 10 latent
steps and 50 ambient steps per training step. Even so, NAEs take about 0.5 seconds per training step,
while CEBMs take about 3 seconds. Another possible reason for the strength of the NAEs is that they can
correct for topological constraints through the NAE’s ambient energy function, which allows it to sample
off-manifold points. This topological correction also explains its outperformance of the two pushforward
models.

The fact that EBIMs generate images of comparable quality suggests that they make up for the inefficiency
of constrained Langevin dynamics with other advantages: namely, an improved ability to learn manifold
topologies. In particular, the implicit manifold (IM) by itself was able to generate samples of decent quality
using Langevin dynamics as described in Section 3.1, whereas samples we produced from training NAEs
without on-manifold initialization in latent space (i.e. by just training the manifold without using the density
within) were not digit- or clothing-like at all. This result indicates EBIMs may be learning manifolds better,
but the sampling procedure within their manifolds is simply less efficient.

5FID scores measure some distance between two probability distributions, but it is unclear whether they measure the fidelity
of a learned manifold and the density within (Stein et al., 2023). We report it as it is the most popular metric, though its
suitability for simple greyscale datasets like MNIST and Fashion MNIST is questionable.

12

Published in Transactions on Machine Learning Research (12/2023)

Despite its inefficiency, however, constrained Langevin Monte Carlo demonstrates clear value in the fact that
EBIMs produce better samples than the original IMs. This suggests that the CEBM step does indeed refine
the density of the IM and that this refinement translates measurably into sample quality.

Figure 8: Uncurated samples from
(M1 ∪M4) ∩ (M4 ∪M7).

Manifold arithmetic In this section, we apply manifold arith-
metic to image manifolds. We denote by Mi the manifold corre-
sponding to class i of MNIST. Here we consider two overlapping
image manifolds based on subsets of the MNIST manifold: (1)
M1 ∪ M4 and (2) M4 ∪ M7. In our experiment, we train two
MDFs; one fitted to each of M1 ∪M4 and M4 ∪M7. We then
take the intersection of the two learned manifolds by concatenat-
ing the outputs of the MDFs as outlined in Section 3.1. This new
MDF should define the manifold (M1 ∪M4) ∩ (M4 ∪M7). We
sample from this intersection manifold using Langevin dynamics
as described in Section 3.1. An uncurated collection of samples is
visible in Figure 8. Most samples belong to M4, as expected, but
interestingly, some samples are ambiguous and appear to belong to
M1 ∩M7 as well.

We also tried directly computing the union (M1 ∪M4)∪ (M4 ∪M7), but Langevin dynamics was unstable
for the product of two MDFs. Instead, to generate images from unions of manifolds, we recommend sampling
from a mixture of the two image manifolds: by first sampling from a categorical distribution indicating which
model to sample from, and then from the corresponding manifold. Still, the manifold arithmetic approach
to unions is unique in providing an implicit representation of the new manifold (eg. for visualization, as in
Figure 3).

5 Conclusion

In this paper we observed that most existing techniques to jointly learn data manifolds and densities can
be described as pushforward models. These models must become near-homeomorphisms, an overly strong
topological limitation, in order to provide reliable density estimates. To circumvent this limitation, we
introduced the energy-based implicit model, which was outlined in two parts. First, we proposed to learn the
data manifold implicitly with a neural network Fθ. We then proposed the constrained EBM, a new type of
EBM for modelling data on neural implicit manifolds. In both cases, we showed how the computation of the
Jacobian of Fθ can be “tamed” using stochastic estimates and automatic differentiation tricks inspired by the
injective flows literature (Kumar et al., 2020; Caterini et al., 2021) which frequently grapples with non-square
Jacobians. We used these techniques to model distributions with complex topologies; the resulting efficiency
gains allowed us to scale the resulting model up to image data.

Although we have covered the limitations of pushforward models when used for density estimation, we
highlight here some of their advantages over our model. Primarily, pushforward models come with latent
representations of data, which have myriad uses such as explainability and artificial reasoning (Higgins et al.,
2017; Mathieu et al., 2019) and efficient density estimation in the latent space. A promising direction for
future work is to combine these benefits with those of EBIMs.

Another direction would be to sidestep pushforward models entirely and investigate whether densities on
manifolds can be extracted from diffusion models. Diffusion models are known to provide full-dimensional
densities once converted into continuous normalizing flows (Song et al., 2021a;b). However, these are not
densities on manifolds. On the other hand, Pidstrigach (2022) has shown that, if a diffusion model’s score
function is allowed to explode towards infinity as the timestep approaches 0, it is capable of modelling
manifold-supported data. Being able to extract densities on the manifold under these conditions would be
interesting, though to our knowledge, there is no known way to do so.

Future work might also study extra applications of the manifold recovered by Fθ, such as unsupervised out-
of-distribution detection. Informally, since ||Fθ(x)|| measures distance from the data manifold, one might
expect its value to be larger for out-of-distribution points. However, anecdotally, we occasionally observed in-

13

Published in Transactions on Machine Learning Research (12/2023)

distribution (Fashion-MNIST) points being assigned larger ||Fθ(x)|| values than out-of-distribution (MNIST)
points, mirroring the pathologies observed by Nalisnick et al. (2019) for density estimators. This behaviour
suggests that our network for ||Fθ(x)|| is inhibited in this task by similar inductive biases (Kirichenko et al.,
2020). An interesting direction would be to understand this problem in the context of manifold learning.

Our model also inherits all the limitations of training EBMs; for example, it relies on the assumption that
Langevin dynamics converges, which occurs only with infinite steps. Sampling remains slower than normal
EBMs due to the complexity of constrained Langevin dynamics. Constrained EBMs might thus benefit from
training methods that do not involve sampling, such as the Stein discrepancy (Grathwohl et al., 2020b) or
score-matching (Hyvärinen, 2005; Song & Kingma, 2021; De Bortoli et al., 2022). This might help the model
scale to larger datasets like CIFAR-10 (Krizhevsky & Hinton, 2009), which we were able to train an implicit
manifold on, but on which we found tuning of the CEBM intractable.

Acknowledgments

We thank Emile Mathieu for assisting us with the global flood event dataset. We also thank Kin Kwan
Leung for our discussions about which submanifolds can be modelled implicitly.

References
Jose Ameijeiras-Alonso and Christophe Ley. Sine-skewed toroidal distributions and their application in

protein bioinformatics. Biostatistics, 23(3):685–704, 2020.

Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. In International Con-
ference on Learning Representations, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pp. 214–223, 2017.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Understanding
and mitigating exploding inverses in invertible neural networks. In International Conference on Artificial
Intelligence and Statistics, pp. 1792–1800, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,
Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal probabilistic
programming. Journal of Machine Learning Research, 20(28):1–6, 2019.

Wouter Boomsma, Kanti V Mardia, Charles C Taylor, Jesper Ferkinghoff-Borg, Anders Krogh, and Thomas
Hamelryck. A generative, probabilistic model of local protein structure. Proceedings of the National
Academy of Sciences, 105(26):8932–8937, 2008.

G Robert Brakenridge. Global active archive of large flood events. Dartmouth Flood Observatory, University
of Colorado, 2010.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation. In
Advances in Neural Information Processing Systems, 2020.

Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel Loaiza-Ganem.
Verifying the union of manifolds hypothesis for image data. In International Conference on Learning
Representations, 2023.

Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of MCMC methods on implicitly
defined manifolds. In International Conference on Artificial Intelligence and Statistics, pp. 161–172, 2012.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

14

Published in Transactions on Machine Learning Research (12/2023)

Simon Byrne and Mark Girolami. Geodesic Monte Carlo on embedded manifolds. Scandinavian Journal of
Statistics, 40(4):825–845, 2013.

Theophilos Cacoullos. Estimation of a multivariate density. Annals of the Institute of Statistical Mathematics,
18(1):179–189, 1966.

Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior of spaces
of natural images. International Journal of Computer Vision, 76(1):1–12, 2008.

Anthony L Caterini and Gabriel Loaiza-Ganem. Entropic issues in likelihood-based OOD detection. In I
(Still) Can’t Believe It’s Not Better! Workshop at NeurIPS 2021, pp. 21–26, 2021.

Anthony L Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, and John P Cunningham. Rectangular flows for
manifold learning. In Advances in Neural Information Processing Systems, 2021.

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, and Yoshua
Bengio. Your GAN is secretly an energy-based model and you should use discriminator driven latent
sampling. In Advances in Neural Information Processing Systems, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, 2018.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948, 2019.

Rob Cornish, Anthony L Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity constraints
with continuously indexed normalising flows. In International Conference on Machine Learning, pp. 2133–
2143, 2020.

Jesse C Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto Reyes-Gonzalez, Marco Letizia,
and Anthony L Caterini. Caloman: Fast generation of calorimeter showers with density estimation on
learned manifolds. arXiv preprint arXiv:2211.15380, 2022.

Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of Sciences, Eötvös Loránd
University, Hungary, 24(48):7, 2001.

Bin Dai and David Wipf. Diagnosing and enhancing VAE models. In International Conference on Learning
Representations, 2019.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and Arnaud
Doucet. Riemannian score-based generative modeling. In Advances in Neural Information Processing
Systems, 2022.

Persi Diaconis, Susan Holmes, and Mehrdad Shahshahani. Sampling from a manifold. In Advances in Modern
Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton, pp. 102–125. Institute of
Mathematical Statistics, 2013.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In International
Conference on Learning Representations, 2017.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In Advances in
Neural Information Processing Systems, 2019.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models. In
Advances in Neural Information Processing Systems, 2020.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H.
Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien
Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. POT: Python
optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

15

Published in Transactions on Machine Learning Research (12/2023)

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch: Black-
box matrix-matrix Gaussian process inference with GPU acceleration. In Advances in neural information
processing systems, 2018.

Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on Riemannian manifolds.
arXiv:1611.02304, 2016.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From variational
to deterministic autoencoders. In International Conference on Learning Representations, 2020.

Josiah Willard Gibbs. Elementary Principles in Statistical Mechanics: Developed with Special Reference to
the Rational Foundations of Thermodynamics. C. Scribner’s Sons, 1902.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, 2014.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and
Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like one. In
International Conference on Learning Representations, 2020a.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, and Richard Zemel. Learning
the stein discrepancy for training and evaluating energy-based models without sampling. In International
Conference on Machine Learning, pp. 3732–3747, 2020b.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regularization
for learning shapes. In International Conference on Machine Learning, pp. 3789–3799, 2020.

Horace He and Richard Zou. functorch: JAX-like composable function transforms for PyTorch. https:
//github.com/pytorch/functorch, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv:1606.08415, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances in Neural
Information Processing Systems, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational
framework. In International Conference on Learning Representations, 2017.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,
14(8):1771–1800, 2002.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, 2020.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine
Learning Research, 6(24):695–709, 2005.

Uyeong Jang, Susmit Jha, and Somesh Jha. On the need for topology-aware generative models for manifold-
based defenses. In International Conference on Learning Representations, 2020.

Varuna Jayasiri and Nipun Wijerathne. labml.ai annotated paper implementations, 2020.

Dimitris Kalatzis, Johan Ziruo Ye, Alison Pouplin, Jesper Wohlert, and Søren Hauberg. Density estimation
on smooth manifolds with normalizing flows. arXiv:2106.03500, 2021.

16

https://github.com/pytorch/functorch
https://github.com/pytorch/functorch

Published in Transactions on Machine Learning Research (12/2023)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect out-of-
distribution data. In Advances in Neural Information Processing Systems, 2020.

Konik Kothari, AmirEhsan Khorashadizadeh, Maarten de Hoop, and Ivan Dokmanić. Trumpets: Injective
flows for inference and inverse problems. In Uncertainty in Artificial Intelligence, pp. 1269–1278, 2021.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

Abhishek Kumar, Ben Poole, and Kevin Murphy. Regularized autoencoders via relaxed injective probability
flow. In International Conference on Artificial Intelligence and Statistics, pp. 4292–4301, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. A tutorial on energy-
based learning. Predicting Structured Data, 2006.

John M Lee. Introduction to Smooth Manifolds. Springer New York, 2012.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Jesse C Cresswell, and Anthony L Caterini. Diagnosing and
fixing manifold overfitting in deep generative models. Transactions on Machine Learning Research, 2022.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial autoen-
coders. arXiv:1511.05644, 2015.

Kanti V Mardia, Charles C Taylor, and Ganesh K Subramaniam. Protein bioinformatics and mixtures of
bivariate von Mises distributions for angular data. Biometrics, 63(2):505–512, 2007.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. In Advances in Neural
Information Processing Systems, 2020.

Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. Disentangling disentanglement in
variational autoencoders. In International Conference on Machine Learning, pp. 4402–4412, 2019.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. Journal of Open Source Software, 3(29):861, 2018.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3D reconstruction in function space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4460–4470, 2019.

Andriy Mnih and Geoffrey Hinton. Learning nonlinear constraints with contrastive backpropagation. In
Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1302–1307, 2005.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv:1610.03483,
2016.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do deep
generative models know what they don’t know? In International Conference on Learning Representations,
2019.

Michael Niemeyer and Andreas Geiger. GIRAFFE: Representing scenes as compositional generative neural
feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11453–11464, 2021.

17

Published in Transactions on Machine Learning Research (12/2023)

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric ren-
dering: Learning implicit 3D representations without 3D supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3504–3515, 2020.

Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent non-persistent
short-run MCMC toward energy-based model. In Advances in Neural Information Processing Systems,
2019.

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy of MCMC-based
maximum likelihood learning of energy-based models. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 5272–5280, 2020.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business Media, 2006.

Arkadas Ozakin and Alexander Gray. Submanifold density estimation. In Advances in Neural Information
Processing Systems, 2009.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 165–174, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, 2019.

Xavier Pennec. Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measure-
ments. In Workshop on Nonlinear Signal and Image Processing, pp. 194–198, 1999.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible and accelerated proba-
bilistic programming in NumPyro. arXiv preprint arXiv:1912.11554, 2019.

Jakiw Pidstrigach. Score-based generative models detect manifolds. In Advances in Neural Information
Processing Systems, 2022.

Robert Pless and Richard Souvenir. A survey of manifold learning for images. IPSJ Transactions on
Computer Vision and Applications, 1:83–94, 2009.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension
of images and its impact on learning. In International Conference on Learning Representations, 2021.

Andres Potapczynski, Luhuan Wu, Dan Biderman, Geoff Pleiss, and John P Cunningham. Bias-free scalable
Gaussian processes via randomized truncations. In International Conference on Machine Learning, 2021.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv:1710.05941,
2017.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International Con-
ference on Machine Learning, pp. 1530–1538, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning, pp. 1278–1286,
2014.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racaniere, Michael Albergo, Gurtej Kanwar,
Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres. In International Conference
on Machine Learning, pp. 8083–8092, 2020.

18

Published in Transactions on Machine Learning Research (12/2023)

Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller. The manifold tangent
classifier. In Advances in Neural Information Processing Systems, 2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

Brendan Leigh Ross and Jesse C Cresswell. Tractable density estimation on learned manifolds with conformal
embedding flows. In Advances in Neural Information Processing Systems, 2021.

Walter Rudin. Real and Complex Analysis. McGraw-Hill, Inc., third edition, 1987.

Antoine Salmona, Valentin de Bortoli, Julie Delon, and Agnès Desolneux. Can push-forward generative
models fit multimodal distributions? In Advances in Neural Information Processing Systems, 2022.

Sahil Sidheekh, Chris B Dock, Tushar Jain, Radu Balan, and Maneesh K Singh. VQ-flows: Vector quantized
local normalizing flows. In Uncertainty in Artificial Intelligence, pp. 1835–1845, 2022.

Harshinder Singh, Vladimir Hnizdo, and Eugene Demchuk. Probabilistic model for two dependent circular
variables. Biometrika, 89(3):719–723, 2002.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pp. 2256–2265,
2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2021a.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv:2101.03288, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021b.

George Stein, Jesse C Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, J Eric T Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of gen-
erative model evaluation metrics and their unfair treatment of diffusion models. In Advances in Neural
Information Processing Systems, 2023.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders. In
International Conference on Learning Representations, 2018.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In International
Conference on Machine Learning, pp. 681–688, 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, 2017.

Zhisheng Xiao, Qing Yan, and Yali Amit. Generative latent flow. arXiv:1905.10485, 2019.

Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. VAEBM: A symbiosis between variational
autoencoders and energy-based models. In International Conference on Learning Representations, 2021.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative ConvNet. In International
Conference on Machine Learning, pp. 2635–2644, 2016.

Tatsuya Yatagawa. torchmcubes: marching cubes for pytorch, 2021. URL https://github.com/tatsy/
torchmcubes.

19

https://github.com/tatsy/torchmcubes
https://github.com/tatsy/torchmcubes

Published in Transactions on Machine Learning Research (12/2023)

Sangwoong Yoon, Yung-Kyun Noh, and Frank Park. Autoencoding under normalization constraints. In
International Conference on Machine Learning, pp. 12087–12097, 2021.

Emilio Zappa, Miranda Holmes-Cerfon, and Jonathan Goodman. Monte Carlo on manifolds: Sampling
densities and integrating functions. Communications on Pure and Applied Mathematics, 71(12):2609–
2647, 2018.

Yijia Zheng, Tong He, Yixuan Qiu, and David P Wipf. Learning manifold dimensions with conditional
variational autoencoders. In Advances in Neural Information Processing Systems, 2022.

20

Published in Transactions on Machine Learning Research (12/2023)

A Formal setting

Here we expand on the formal setting in which we seek to perform density estimation.

Geometry Let M be an m-dimensional orientable6 Riemannian submanifold of ambient space Rn where
m < n. Formally this refers to the pair (M, g), where M ⊆ Rn is a manifold and g is the Riemannian
metric inherited from ambient Euclidean space. In other words, g is the restriction of the canonical Euclidean
metric, which is characterized by the standard dot product between vectors, to vectors which are tangent to
M. The metric g, which is typically implied, captures the curvature information we would like to associate
with M.

A manifold’s Riemannian metric gives rise to a unique differential form known as the Riemannian volume
form dµ, which allows for the integration of continuous, compactly supported, real-valued functions h over
the Riemannian manifold (Lee, 2012): ∫

M
h dµ. (15)

Probability Let {xi} be observed samples drawn from P ∗, a probability measure supported onM. Since
M has a lower intrinsic dimension than Rn, it is “infinitely thin.” In other words, P ∗(M) = 1 while the
(Lebesgue) volume ofM is 0, meaning no probability density integrated over the ambient space can be used
to represent P ∗. Formally stated, P ∗ is not absolutely continuous with respect to the Lebesgue measure on
Rn.

Instead, we require a new way to define the volumes of subsets of M. We can then formally define a
probability density p∗ overM and integrate with respect to this volume to obtain probabilities. The volume
form dµ on M is the answer; the probability of a set S ⊆M can be computed as follows:

P ∗(S) =
∫
S

p∗(x) dµ(x). (16)

We note that the volume form dµ from differential geometry is not technically a measure in the sense of
measure theory. This obstacle is minor: dµ can be extended to a true measure by a common measure-
theoretic tool known as the Riesz-Markov-Kakutani representation theorem7 (Rudin, 1987). Thus we may
identify dµ with a measure µ on M which produces volumes of Borel sets in M and which we call the
Riemannian measure of M (Pennec, 1999).

Formally, we require P ∗ to be absolutely continuous with respect to µ, and we thus write that p∗ is the
Radon-Nikodym derivative of P ∗ with respect to µ: p∗ = dP∗

dµ . This is the ground-truth density function we
seek to model in this work.

B Experimental Details

For all experiments, we use feedforward networks with SiLU activations (Hendrycks & Gimpel, 2016; Ra-
machandran et al., 2017). All models are trained with the Adam optimizer (Kingma & Ba, 2015) with the
default PyTorch parameters, except for the learning rate which is set as described below.

B.1 Low-Dimensional Data

All EBMs, EBIMs, and pushforward EBMs in this subsection are trained with a buffer size of 1000, from
which we initialize each Langevin dynamics sample with 95% probability. We do not use spectral normaliza-
tion for EBMs: we found it harmed the quality of density estimates. Initial noise for the EBIM is sampled

6We focus on orientable manifolds because, as discussed in Section 3.1, manifolds with non-trivial normal bundles, which
include non-orientable manifolds, cannot be modelled implicitly. This formal problem setting can be expanded to non-orientable
submanifolds too, but requires a slightly different construction than is used in this section.

7In the reference and sometimes in general, this theorem is called the Riesz representation theorem, which can also refer to
a different theorem about Hilbert spaces.

21

Published in Transactions on Machine Learning Research (12/2023)

Table 3: Statistics of estimated dataset distances to the manifold.

Experiment EBIM Pushforward EBM
Min Median Mean Max Min Median Mean Max

Motivating example 0.059× 10−5 0.30× 10−2 0.34× 10−2 0.012 0.376× 10−5 0.27× 10−2 0.33× 10−2 0.153
Manifold arithmetic 2.387× 10−5 0.77× 10−2 0.79× 10−2 0.018 - - - -
Von Mises mixture 0.006× 10−5 0.73× 10−2 0.98× 10−2 0.045 0.810× 10−5 0.47× 10−2 0.51× 10−2 0.095
Geospatial data 0.132× 10−5 0.24× 10−2 0.24× 10−2 0.009 20× 10−5 0.16× 10−2 0.17× 10−2 0.016
Amino acid modelling 9.176× 10−5 2.80× 10−2 2.86× 10−2 0.16 6.96× 10−5 0.92× 10−2 1.72× 10−2 0.271

uniformly from a box in ambient space containing the ground truth manifold and then projected to the
manifold by solving for arg minx′ ∥Fθ∗(x′)∥2 with L-BFGS using strong Wolfe line search. Equation 14 is
also optimized using a single step of L-BFGS with strong Wolfe line search. All models were tuned by hand
for visual performance. Training times are reported below, but we caution that models were not tuned
for runtime, so the raw times should not be compared between models to evaluate efficiency. In general
the constrained EBM is the slowest, followed by the MDF and ordinary EBMs, then the two stages of the
pushforward EBM.

To plot the EBIM densities, we estimate the normalizing constants using Monte Carlo. Since the learned
MDFs always provide very good approximations of the true manifolds, we estimate each normalizing constant
using uniform samples from the ground truth manifold for convenience. To plot the pushforward EBM
densities, we estimate the normalizing constants in latent space with Monte Carlo estimates based on uniform
sampling within the clamped bounds. We then compute pushforward densities with Equation 2.

All low-dimensional experiments were performed on an Intel Xeon Silver 4114 CPU.

To evaluate Wasserstein-1 distances, we discretize the space into cells (with a granularity of 100 × 100 for
the 2D example and 30× 30× 30 for the 3D examples) and use a large quantity of samples from the model
manifold to determine whether the model manifold exists in each cell. We then use these samples to evaluate
the average density value per cell. These density values are normalized over all cells and used to compute a
discrete Wasserstein-1 distance with the pot library (Flamary et al., 2021), where distances between pairs
of cells are encoded as the distance between their centres.

We provide additional quantitative results in Table 3. Here we estimate the distance of each training point to
the manifold using an optimization procedure, and report minimum, median, mean, and maximum distances
over the training set. Nearest-point estimates must be computed differently for EBIMs and pushforward
EBMs, and therefore estimates for each model are prone to different sources of error, so these metrics should
be used only with caution as a basis for comparison. For the EBIM with MDF Fθ∗ , we compute the nearest
point on the manifold to datapoint xi as

x∗ = arg min
x′

∥x′ − xi∥2 + 1010∥Fθ∗(x′)∥2,

where x′ has been initialized to xi. For the pushforward EBM with encoder-decoder pair (fθ∗ , gϕ∗), we
compute the nearest point as fθ∗(z∗), where

z∗ = arg min
z
∥fθ∗(z)− xi∥2,

where z has been initialized to gϕ∗(xi).

Motivating example (Figure 1) We sampled 1000 points from a von Mises distribution on a unit circle
centred at (0, 0) with the mode located at (1, 0) and a concentration of 2.

The MDF for the EBIM consisted of 3 hidden layers with 8 units per hidden layer. The MDF was trained for
300 epochs with a batch size of 50, a learning rate of 0.01, η = 1, α = 0.3, and β = 10. Langevin dynamics
with run with ε = 0.1 and a step size of 10. Training took 4 minutes, 8 seconds.

The energy function for the EBIM consisted of 2 hidden layers with 32 units per hidden layer. It was trained
for 20 epochs with a batch size of 50, a learning rate of 0.01, gradients clipped to a norm of 1, and energy

22

Published in Transactions on Machine Learning Research (12/2023)

Figure 9: EBIM manifold learning and density estimation results on a von Mises distribution where Langevin
dynamics during training has been run (with no replay buffer) with different step counts. From left to right
and top to bottom, step counts per training step: 1, 3, 5, 10, 20, 40. The setting of 20 langevin dynamics
steps is sufficient for convergence.

magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training step were run for 10
steps with ε = 0.3, a step size of 1, and energy gradients clamped to maximum values of 0.1 at each step.
Training took 2 minutes, 51 seconds. In Figure 9, we evaluate the effect of the Langevin dynamics step
count on training dynamics, where we vary the step size (and remove the training buffer, as this effectively
increases the average step count). Fewer steps leads to a more peaked mode because the estimated model
distribution is overly smooth when estimating the right-hand side of Equation 10.

The pushforward EBM’s encoder and decoder each had 3 hidden layers with 32 units per hidden layer. They
were jointly trained for 300 epochs with a batch size of 50, a learning rate of 0.001, and gradients clipped to
a norm of 1. Training took 31.6 seconds.

The pushforward EBM’s energy function had 3 hidden layers and 32 units per hidden layer. It was trained
for 200 epochs with a batch size of 50, a learning rate of 0.01, gradients clipped to a norm of 1, and energy
magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training step were run for 20
steps with ε = 0.5, a step size of 10, and energy gradients clamped to maximum values of 0.03 at each step.
Training took 3 minutes, 5 seconds.

Manifold arithmetic Figure 3 depicts two modes of composition for EBIMs. The EBIM depicted on
the left is learned from 1000 points sampled from a balanced mixture of two projected normal distributions.
Each component was a normal distribution with unit diagonal covariance centred at (1, 0, 0) and (−1, 0, 0),
respectively, before being projected to the sphere. After this, with no additional training, we manipulate
it to create new probability models. First, two copies of the learned model are translated by 0.5 units in
opposite directions.

• A new model given by the union of these two copies is depicted in the middle pane of Figure 3:
it consists of the product of their MDFs and a balanced mixture of their corresponding energies.
Note that the new surface self-intersects, and is no longer formally an embedded submanifold.

• Another new model given by the intersection of these two copies is visible in the final pane. By
concatenating the output of the MDFs and summing the corresponding energies, we arrive at a
circle embedded in three dimensions.

23

Published in Transactions on Machine Learning Research (12/2023)

Figure 10: Manifold learning and density estimation performance for different weightings β on the KL-
divergence term of the VAE loss. From left to right, top to bottom: β = 0.01, β = 0.03, β = 0.05, β =
0.1, β = 0.2, β = 0.4.

The MDF for the EBIM consisted of 3 hidden layers with 8 units per hidden layer. The MDF was trained
for 300 epochs with a batch size of 100, a learning rate of 0.01, η = 0.1, α = 0.3, and β = 10. Langevin
dynamics at each training step were run for 10 steps with ε = 0.1, a step size of ε2, and energy gradients
clamped to maximum values of 0.03 at each step. Training took 2 minutes 11 seconds.

The energy function for the EBIM consisted of 2 hidden layers with 32 units per hidden layer. It was trained
for 20 epochs. We used a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of 1, and
energy magnitudes regularized with a coefficient of 1. Langevin dynamics at each training step was run for
10 steps with ε = 0.3, a step size of ε2, and energy gradients clamped to maximum values of 0.03 at each
step. Training took 2 minutes, 15 seconds.

Von Mises mixture We sampled 1000 points from a balanced mixture of two von Mises distributions
with concentration 2 on circles of unit radius. Respectively, they are centred at (−2, 0) and (2, 0) with modes
at (−1, 0) and (1, 0) (or, at polar angles of 0 and π with respect to the centre of each circle).

The MDF for the EBIM consisted of 3 hidden layers with 8 units per hidden layer. The MDF was trained for
500 epochs with a batch size of 100, a learning rate of 0.01, η = 1, α = 0.3, and β = 1. Langevin dynamics
at each training step was run for 20 steps with ε = 0.1, a step size of 10, and energy gradients clamped to
maximum values of 0.03 at each step. Training took 3 minutes, 47 seconds.

The energy function for the EBIM consisted of 3 hidden layers with 32 units per hidden layer. It was trained
for 10 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of 1, and energy
magnitudes regularized with a coefficient of 0.3. Langevin dynamics at each training step were run for 10
steps with ε = 0.5, a step size of 1, and energy gradients clamped to maximum values of 0.1 at each step.
Training took 1 minute, 23 seconds.

The (ambient) EBM consisted of 3 hidden layers with 32 units per hidden layer. It was trained for 200
epochs with a step size of 10. We used a batch size of 100, a learning rate of 0.01, gradients clipped to a
norm of 1, and energy magnitudes regularized with a coefficient of 0.5. Langevin dynamics at each training
step were run for 10 steps with ε = 0.1 and energy gradients clamped to maximum values of 0.03 at each
step. Training took 1 minute, 14 seconds at each step.

The pushforward EBM’s encoder and decoder each had 3 hidden layers with 32 units per hidden layer. It
was trained for 300 epochs with a batch size of 100, a learning rate of 0.001, and gradients clipped to a norm
of 1. Training took 34.1 seconds. We also tried training the autoencoder using a variational autoencoder
loss, but found that to learn the manifold properly, the KL term had to be heavily downweighted near the
point of nonexistence. In Figure 10 we show how manifold learning ability deteriorates as the KL-weighting
is increased.

24

Published in Transactions on Machine Learning Research (12/2023)

Figure 11: EBIM manifold learning and density estimation results on the glycine angle data for different
values of η, the hyperparameter setting the boundary under which singular values will be penalized by the
Jacobian regularization term. From left to right: η = 0.3, η = 1, η = 2, η = 3, and η = 5.

The pushforward EBM’s energy function had 3 hidden layers and 32 units per hidden layer. It was trained
for 300 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of 1, and energy
magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training step was run for 20
steps with ε = 1.0, a step size of 10, and energy gradients clamped to maximum values of 0.03 at each step.
Training took 2 minutes, 21 seconds.

Geospatial data We modelled floods from the Dartmouth Flood Observatory’s global active archive,
which is available without charge for research and education purposes.

The MDF for the EBIM consisted of 3 hidden layers with 8 units per hidden layer. The MDF was trained for
300 epochs with a batch size of 50, a learning rate of 0.01, η = 1, α = 0.3, and β = 10. Langevin dynamics
at each training step was run for 20 steps with ε = 0.1, a step size of 10, and energy gradients clamped to
maximum values of 0.03 at each step. Training took 19 minutes, 43 seconds.

The energy function for the EBIM consisted of 4 hidden layers with 32 units per hidden layer. It was trained
for 100 epochs. We used a batch size of 50, a learning rate of 0.01, gradients clipped to a norm of 1, and
energy magnitudes regularized with a coefficient of 1. Langevin dynamics at each training step was run for 5
steps with ε = 0.1, a step size of ε2, and energy gradients clamped to maximum values of 0.03 at each step.
Training took 1 hour, 52 seconds.

The pushforward EBM’s encoder and decoder each had 4 hidden layers with 32 units per hidden layer. They
were jointly trained for 500 epochs with a batch size of 100, a learning rate of 0.001, and gradients clipped
to a norm of 1. Training took 2 minutes, 33 seconds.

The pushforward EBM’s energy function had 4 hidden layers and 32 units per hidden layer. It was trained
for 50 epochs with a batch size of 50, a learning rate of 0.01, gradients clipped to a norm of 1, and energy
magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training step were run for 60
steps with ε = 0.5, a step size of 10, and energy gradients clamped to maximum values of 0.03 at each step.
Training took 9 minutes, 9 seconds.

Amino acid modelling The MDF for the EBIM consisted of 2 hidden layers with 8 units per hidden
layer. The MDF was trained for 500 epochs with a batch size of 50, a learning rate of 0.01, η = 0.3, α = 0,
and β = 1. We found that increasing η, the smallest singular value required of JFθ by the regularization
term, made the implicit manifold harder to optimize. This occasionally yielded plateaus in the loss function
and resulted in incorrect manifolds, depicted in Figure 11. Training took 9.5 seconds.

The energy function for the EBIM consisted of 2 hidden layers with 32 units per hidden layer. It was trained
for 10 epochs each wherein Langevin dynamics. We used a batch size of 100, a learning rate of 0.01, gradients
clipped to a norm of 1, and energy magnitudes regularized with a coefficient of 1. Langevin dynamics at
each training step was run for 10 steps with ε = 0.1, a step size of ε2, and energy gradients clamped to
maximum values of 0.03 at each step. Training took 1 minute, 8 seconds.

25

Published in Transactions on Machine Learning Research (12/2023)

The pushforward EBM’s encoder and decoder each had 3 hidden layers with 32 units per hidden layer. They
were jointly trained for 500 epochs with a batch size of 50, a learning rate of 0.001, and gradients clipped to
a norm of 1. Training took 33.5 seconds.

The pushforward EBM’s energy function had 3 hidden layers and 32 units per hidden layer. It was trained
for 50 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of 1, and energy
magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training step were run for 60
steps with ε = 0.5, a step size of 10, and energy gradients clamped to maximum values of 0.03 at each step.
Training took 1 minute, 53 seconds.

B.2 Image Data

We parameterized the MDF in our EBM with a small UNet architecture modifed from the implementation in
the labml.ai Python package (Jayasiri & Wijerathne, 2020), with layer widths scaled down by 75%. We chose
a UNet because its skip connections give it full rank with a large output dimensionality (28×28−16 = 768).
All other image model architectures were based on the Conv28 architecture of Yoon et al. (2021). All
encoders and decoders were identical to that of Conv28. The constrained energy function for the EBIM
models was also identical, except with an output dimension of 1. The energy functions for the AE+EBM,
VAE+EBM, and EBIM, as well as the MDF, were trained with spectral normalization.

Nearly the same hyperparameters were used for both datasets, with the exception that a manifold dimension
of 30 was used for the AE + EBM on Fashion MNIST (while 16 was used everywhere else).

The autoencoder in the AE + EBM was trained with a learning rate of 1× 10−4 and a batch size of 128 for
100 epochs. Gradients were clipped to a maximum norm of 10. The EBM in the AE + EBM was trained
with a learning rate of 1 × 10−5 and a batch size of 128 for 200 epochs. Gradients were also clipped to a
maximum norm of 10. Energy norms were regularized with a coefficient of 0.1. During training, samples
were initialize from the buffer 95% of the time. Langevin dynamics was run for 60 steps with a step size of
10, noise of 0.005, and energy gradients were clamped to maximum entries of 0.03.

The autoencoder in the VAE + EBM was trained using the same hyperparameters as in the AE + EBM,
and the KL divergence term was trained with a weight of 1 × 10−5. The energy was also trained with the
same hyperparameters, except with a learning rate of 1× 10−4.

The hyperparameters used in Yoon et al. (2021) for the NAE were chosen for OOD detection; we changed
them slightly for generative performance. For the latent on-manifold initialization step, we used a step size
of 10 and a noise standard deviation of 0.005. In ambient space, we used noise with standard deviation
0.005. Models were pre-trained with the reconstruction loss alone for 100 epochs and then trained using the
NAE loss for 100 more epochs.

The MDF in the EBIM was trained for 100 epochs with a learning rate of 0.0001 and batch size of 128.
Empirically, we found it most effective to sample from and penalize negative samples for ∥Fθ(x′)∥2 while
minimizing ∥Fθ(x)∥ (unsquared) for ground truth data. The negative sample square-norm magnitude was
regularized with a coefficient of 0.1. We did not clip optimization gradients. Langevin dynamics gradients
were clamped to 0.01 during, and we ran Langevin dynamics for 20 steps per training step. We regularized
for a minimum and maximum singular value of 0.01, with a regularization coefficient of 100000. We sampled
from the buffer during training with 95% probability.

The constrained EBM was trained for 100 epochs with a batch size of 64 and learning rate of 0.00001. Energy
values were regularized with a coefficient of 1. Equation 14 was optimized with stochastic gradient descent
with a learning rate of 1 for 60 steps per Langevin dynamics step, 1 of which was run per training step.
Langevin dynamics steps were run with a step size 10, noise with a standard deviation of 0.005, and energy
gradients clamped to a values of 0.005. We sampled from the buffer during training with 95% probability.

26

	Introduction
	Background, Related Work, and Motivation
	Modelling Manifold-Supported Data
	Implicitly Defined Manifolds
	Energy-Based Models

	Method
	Neural Implicit Manifolds
	Constrained Energy-Based Modelling
	Method Summary

	Experiments
	Modelling Non-Trivial Topologies
	Modelling Image Manifolds

	Conclusion
	Formal setting
	Experimental Details
	Low-Dimensional Data
	Image Data

